Diamond experts are schooled for 5 years, and then, master their skill for an additional 5 years before granted an attempt at cutting a 1 carat diamond
 
 
 
 

 

 
Diamond cutting is the practice of changing a diamond from a rough stone into a faceted gem. Cutting diamond requires specialized knowledge, tools, equipment, and techniques because of its extreme difficulty.
The first guild of diamond cutters and polishers (diamantine) was formed in 1375 in Nuremberg, Germany, [citation needed] and led to the development of various types of "cut". This has two meanings in relation to diamonds. The first is the shape: square, oval, and so on. The second relates to the specific quality of cut within the shape, and the quality and price will vary greatly based on the cut quality. Since diamonds are one of the hardest materials, special diamond-coated surfaces are used to grind the diamond down. The first major development in diamond cutting came with the "Point Cut" during the latter half of the 14th century: The Point Cut follows the natural shape of an octahedral rough diamond crystal, eliminating some waste in the cutting process.
Diamond cutting, as well as overall processing, is concentrated in a few cities around the world. The main diamond trading centers are Antwerp, Tel Aviv, and Dubai from where roughs are sent to the main processing centers of India and China. Diamonds are cut and polished in Surat, India and the Chinese cities of Guangzhou and Shenzhen. India in recent years has held between 19–31% of the world market in polished diamonds and China has held 17% of the world market share in a recent year. Another important diamond center is New York City.

 History:

The history of diamond cuts can be traced to the late Middle Ages, before which time diamonds were employed in their natural octahedral state— anhedral (poorly formed) diamonds simply were not used in jewelry. The first "improvements" on nature's design involved a simple polishing of the octahedral crystal faces to create even and unblemished facets, or to fashion the desired octahedral shape out of an otherwise unappealing piece of rough. This was called the point cut and dates from the mid-14th century; by 1375 there was a guild of diamond polishers at Nurnberg. By the mid-15th century, the point cut began to be improved upon: a little less than one half of the octahedron would be sawn off, creating the table cut. The importance of a culet was also realized, and some table-cut stones may possess one. The addition of four corner facets created the old single cut (or old eight cut). Neither of these early cuts would reveal what diamond is prized for today; its strong dispersion or fire. At the time, diamond was valued chiefly for its adamantine luster and superlative hardness; a table-cut diamond would appear black to the eye, as they do in paintings of the era. For this reason, colored gemstones such as ruby and sapphire were far more popular in jewelry of the era.
In or around 1476, Lodewyk (Louis) van Berquem, a Flemish polisher of Bruges, introduced the technique of absolute symmetry in the disposition of facets using a device of his own invention, the scaif. He cut stones in the shape known as pendeloque or briolette; these were pear-shaped with triangular facets on both sides. About the middle of the 16th century, the rose or rosette was introduced in Antwerp: it also consisted of triangular facets arranged in a symmetrical radiating pattern, but with the bottom of the stone left flat—essentially a crown without a pavilion. Many large, famous Indian diamonds of old (such as the Orloff and Sancy) also feature a rose-like cut; there is some suggestion that Western cutters were influenced by Indian stones, because some of these diamonds may predate the Western adoption of the rose cut. However, Indian "rose cuts" were far less symmetrical as their cutters had the primary interest of conserving carat weight, due to the divine status of diamond in India. In either event, the rose cut continued to evolve, with its depth, number and arrangements of facets being tweaked.
The first brilliant cuts were introduced in the middle of the 17th century. Known as Mazarins, they had 17 facets on the crown (upper half). They are also called double-cut brilliants as they are seen as a step up from old single cuts. Vincent Peruzzi, a Venetian polisher, later increased the number of crown facets from 17 to 33 (triple-cut or Peruzzi brilliants), thereby significantly increasing the fire and brilliance of the cut gem, properties that in the Mazarin were already incomparably better than in the rose. Yet Peruzzi-cut diamonds, when seen nowadays, seem exceedingly dull compared to modern-cut brilliants. Because the practice of bruting had not yet been developed, these early brilliants were all rounded squares or rectangles in cross-section (rather than circular). Given the general name of cushion—what are known today as old mine cuts—these were common by the early 18th century. Sometime later the old European cut was developed, which had a shallower pavilion, more rounded shape, and different arrangement of facets. The old European cut was the forerunner of modern brilliants and was the most advanced in use during the 19th century.
Around 1900, the development of diamond saws and good jewelry lathes enabled the development of modern diamond cutting and diamond cuts, chief among them the round brilliant cut. In 1919, Marcel Tolkowsky analyzed this cut: his calculations took both brilliance (the amount of white light reflected) and fire into consideration, creating a delicate balance between the two.  Tolkowsky's calculations would serve as the basis for all future brilliant cut modifications and standards.
Tolkowsky's model of the "ideal" cut is not perfect. The original model served as a general guideline, and did not explore or account for several aspects of diamond cut.
Because every facet has the potential to change a light ray's plane of travel, every facet must be considered in any complete calculation of light paths. Just as a two-dimensional slice of a diamond provides incomplete information about the three-dimensional nature of light behavior inside a diamond, this two-dimensional slice also provides incomplete information about light behavior outside the diamond. A diamond's panorama is three-dimensional. Although diamonds are highly symmetrical, light can enter a diamond from many directions and many angles. This factor further highlights the need to reevaluate Tolkowsky's results, and to recalculate the effects of a diamond's proportions on its appearance aspects. ...
Another important point to consider is that Tolkowsky did not follow the path of a ray that was reflected more than twice in the diamond. However, we now know that a diamond's appearance is composed of many light paths that reflect considerably more than two times within that diamond. Once again, we can see that Tolkowsky's predictions are helpful in explaining optimal diamond performance, but they are incomplete by today's technological standards.
Tolkowsky's guidelines, while revolutionary in their day, are not a definitive solution to the problem of finding the optimum proportions of a round brilliant cut diamond.
In the 1970s, Bruce Harding developed another mathematical model for gem design. Since then, several groups have used computer models and specialized scopes to design diamond cuts.
The world's top diamond cutting and polishing center is India. It processes 11 out of 12 diamonds in jewelry worldwide. The sector employs 1.3 million people and accounts for 14% of India's $80 billion of annual exports. Its share in the world polished diamond market is 92% by pieces and 55% by value.

Theory:

In its rough state, a diamond is fairly unremarkable in appearance. Most gem diamonds are recovered from secondary or alluvial deposits, and such diamonds have dull, battered external surfaces often covered by a gummy, opaque skin—a comparison to "lumps of washing soda" is apt. The act of polishing a diamond and creating flat facets in symmetrical arrangement brings out the diamond's hidden beauty in dramatic fashion.
When designing a diamond cut, two primary factors are considered. Foremost is the refractive index (RI) of a diamond, which, at 2.417 (as measured by sodium light, 589.3 nm), is fairly high compared with that of most other gems. Diamond's RI is responsible for its brilliance—the amount of incident light reflected back to the viewer. Also important is a diamond's dispersive power—the ability of the material to split white light into its component spectral colors—which is also relatively high, at 0.044 (as measured from the B-G interval). The flashes of spectral colors—known as fire—are a function of this dispersion, but are, like brilliance, only apparent after cutting.
Brilliance can be divided into the definitions external brilliance and internal brilliance. The former is the light reflected from the surface of the stone—its luster. Diamond's adamantine ("diamond-like") luster is second only to metallic (i.e., that of metals); while it is directly related to RI, the quality of a finished gem's polish will determine how well a diamond's luster is borne out.
Internal brilliance—the percentage of incident light reflected back to the viewer from the rear (pavilion) facets—relies on careful consideration of a cut's interfacial angles as they relate to diamond's RI. The goal is to attain total internal reflection (TIR) by choosing the crown angle and pavilion angle (the angle formed by the pavilion facets and girdle plane) such that the reflected light's angle of incidence (when reaching the pavilion facets) falls outside diamond's critical angle, or minimum angle for TIR, of 24.4°. Two observations can be made: if the pavilion is too shallow, light meets the pavilion facets within the critical angle, and is refracted (i.e., lost) through the pavilion bottom into the air. If the pavilion is too deep, light is initially reflected outside the critical angle on one side of the pavilion, but meets the opposite side within the critical angle and is then refracted out the side of the stone.
The term scintillation brilliance is applied to the number and arrangement of light reflections from the internal facets; that is, the degree of "sparkle" seen when the stone or observer moves. Scintillation is dependent on the size, number, and symmetry of facets, as well as on quality of polish. Very small stones will appear milky if their scintillation is too great (due to the limitations of the human eye), whereas larger stones will appear lifeless if their facets are too large or too few.
A diamond's fire is determined by the cut's crown height and crown angle (the crown being the top half of the stone, above the girdle), and the size and number of facets that compose it. The crown acts as a prism: light exiting the stone (after reflection from the pavilion facets) should meet the crown facets at as great an angle of incidence from the normal as possible (without exceeding the critical angle) in order to achieve the greatest fanning out or spread of spectral colors. The crown height is related to the crown angle, the crown facet size, and the table size (the largest central facet of the crown): a happy medium is sought in a table that is not too small (which would result in larger crown facets and greater fire at the expense of brilliance) or too large (which would result in smaller crown facets and little to no fire).

 Polish and symmetry:

Polish and symmetry are two important aspects of the cut. The polish describes the smoothness of the diamond's facets, and the symmetry refers to alignment of the facets. With poor polish, the surface of a facet can be dulled, and may create blurred or dulled sparkle. Often the surface of a poor polished diamond will have grain lines running across the facet. It may also constantly look like it needs to be cleaned. With poor symmetry, light can be misdirected as it enters and exits the diamond.

Choice of cut:

The choice of diamond cut is often decided by the original shape of the rough stone, location of internal flaws or inclusions, the preservation of carat weight, and popularity of certain shapes among consumers. The cutter must consider each of these variables before proceeding.
Most gem-quality diamond crystals are octahedra in their rough state (see material properties of diamond). These crystals are usually cut into round brilliants because it is possible to cut two such stones out of one octahedron with minimal loss of weight. If the crystal is malformed or twinned, or if inclusions are present at inopportune locations, the diamond is more likely to receive a fancy cut (a cut other than a round brilliant). This is especially true in the case of macle, which are flattened twin octahedron crystals. Round brilliants have certain requisite proportions that would result in high weight loss, whereas fancy cuts are typically much more flexible in this regard. Sometimes the cutters compromise and accept lesser proportions and symmetry in order to avoid inclusions or to preserve carat weight, since the per-carat price of diamond is much higher when the stone is over one carat (200 mg).
While the round brilliant cut is considered standard for diamond, with its shape and proportions nearly constant, the choice of fancy cut is influenced heavily by fashion. For example, the step cut baguette—which accentuates a diamond's luster, whiteness, and clarity but downplays its fire—was all the rage during the Art Deco period, whereas the mixed Princess cut—which accentuates a diamond's fire and brilliance rather than its luster—is currently gaining popularity. The princess cut is also popular among diamond cutters: of all the cuts, it wastes the least of the original crystal. Older diamonds cut before ca. 1900 were cut in "primitive" versions of the modern round brilliant, such as the rose cut and old mine cut (see History section). Although there is a market for antique stones, many are recut into modern brilliants to increase their marketability. There is also increasing demand for diamonds to be cut in older styles for the purpose of repairing or reproducing antique jewelry.
The size of a diamond may also be a factor. Very small (< 0.02 carats [4 mg]) diamonds—known as melee—are usually given simplified cuts (i.e., with fewer facets). This is because a full-cut brilliant of such small size would appear milky to the human eye, owing to its inability to resolve the stone's dispersive fire. Conversely, very large diamonds are usually given fancy cuts with many extra facets. Conventional round brilliant or fancy cuts do not scale up satisfactorily, so the extra facets are needed to ensure there are no "dead spots". Because large diamonds are less likely to be set in jewelry, their cuts are considered for how well they display the diamonds' properties from a wide range of viewing directions; in the case of more moderate-sized diamonds, the cuts are considered primarily for their face-up appeal.
The dominating round brilliant diamonds are not as trendy as they used to be since the market was overcrowded in the last decades of the century Simultaneously, giving a fancy diamond cut as a precious jewel on specific celebrations became a part of tradition. A Heart cut diamond has romantic symbolism so it is a common gift for Valentine's Day or wedding anniversary. The pear-shaped diamonds look like a drop of water and the shape is suitable for diamond earrings. The most famous shapes are: Princess, Cushion, Heart, Pear, Marquise, Radiant, Escher cut, Emerald, Oval.

 Round brilliant:

Developed ca. 1900, the round brilliant is the most popular cut given to diamond. It is usually the best choice in terms of sale ability, insurability (due to its relatively "safe" shape), and desired optics.

 Facet count and names:

Diamond proportions and facets, for the round brilliant cut.
The modern round brilliant consists of 58 facets (or 57 if the culet is excluded); 33 on the crown (the top half above the middle or girdle of the stone) and 25 on the pavilion (the lower half below the girdle). The girdle may be frosted, polished smooth, or faceted. In recent decades, most girdles are faceted; many have 32, 64, 80, or 96 facets; these facets are excluded from the total facet count. Likewise, some diamonds may have small extra facets on the crown or pavilion that were created to remove surface imperfections during the diamond cutting process. Depending on their size and location, they may hurt the symmetry of the cut and are therefore considered during cut grading.
Crown height, pavilion depth, and table diameter are percentages of the total girdle diameter. Because the pavilion angle (and consequently pavilion depth) is so closely tied to total internal reflection, it varies the least between the different standards.